首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   1篇
大气科学   1篇
地球物理   3篇
地质学   5篇
海洋学   4篇
自然地理   1篇
  2013年   1篇
  2011年   4篇
  2010年   4篇
  2008年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Abstract The Shimanto accretionary complex on the Muroto Peninsula of Shikoku comprises two major units of Tertiary strata: the Murotohanto Sub-belt (Eocene-Oligocene) and the Nabae Sub-belt (Oligocene-Miocene). Both sub-belts have been affected by thermal overprints following the peak of accretion-related deformation. Palaeotemperatures for the entire Tertiary section range from ~ 140 to 315°C, based upon mean vitrinite reflectance values of 0.9–5.0%Rm. Values of illite crystallinity index are consistent with conditions of advanced diagenesis and anchimetamorphism. Illite/mica b0 lattice dimensions indicate that burial pressures were probably no greater than 2.5kbar. In general, levels of thermal maturity are higher for the Murotohanto Sub-belt than for the Nabae Sub-belt. The Eocene-Oligocene strata also display a spatial decrease in thermal maturity from south to north and this pattern probably was caused by regional-scale differential uplift following peak heating. Conversely, the palaeothermal structure within the Nabae Sub-belt is fairly uniform, except for the local effects of mafic intrusions at the tip of Cape Muroto. There is a paleotemperature difference of ~ 90°C across the boundary between the Murotohanto and Nabae Sub-belts (Shiina-Narashi fault), and this contrast is consistent with approximately 1200 m of post-metamorphic vertical offset. Subduction prior to Middle Miocene probably involved the Kula or fused Kula-Pacific plate and the background geothermal gradient during the Eocene-Oligocene phase of accretion was ~ 30–35°C/km. Rapid heating of the Shimanto Belt evidently occurred immediately after a Middle Miocene reorganization of the subduction boundary. Hot oceanic lithosphere from the Shikoku Basin first entered the subduction zone at ~ 15 Ma; this event also coincided with the opening of the Sea of Japan and the rapid clockwise rotation of southwest Japan. The background geothermal gradient at that time was ~ 70°C/km. Whether or not all portions of the inherited (Eocene-Oligocene) palaeothermal structure were overprinted during the Middle Miocene remains controversial.  相似文献   
2.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   
3.
The major source of reduced sulfur in the remote marine atmosphere is the biogenic compound dimethylsulfide (DMS), which is ubiquitous in the world's oceans and released through food web interactions. Relevant fluxes and concentrations of DMS, its phytoplankton-produced precursor, dimethylsulfoniopropionate (DMSP) and related parameters were measured during an intensive Lagrangian field study in two mesoscale eddies in the Sargasso Sea during July–August 2004, a period characterized by high mixed-layer DMS and low chlorophyll—the so-called ‘DMS summer paradox’. We used a 1-D vertically variable DMS production model forced with output from a 1-D vertical mixing model to evaluate the extent to which the simulated vertical structure in DMS and DMSP was consistent with changes expected from field-determined rate measurements of individual processes, such as photolysis, microbial DMS and dissolved DMSP turnover, and air–sea gas exchange. Model numerical experiments and related parametric sensitivity analyses suggested that the vertical structure of the DMS profile in the upper 60 m was determined mainly by the interplay of the two depth-variable processes—vertical mixing and photolysis—and less by biological consumption of DMS. A key finding from the model calibration was the need to increase the DMS(P) algal exudation rate constant, which includes the effects of cell rupture due to grazing and cell lysis, to significantly higher values than previously used in other regions. This was consistent with the small algal cell size and therefore high surface area-to-volume ratio of the dominant DMSP-producing group—the picoeukaryotes.  相似文献   
4.
Phenomena associated with small ice cap instability (SICI) are investigated using a general circulation model (GCM: NCAR Community Climate Model version 0) and a noise-forced nonlinear energy balance model (EBM). Both make use of idealized boundary conditions consisting of an all-land planet without topography and mean annual insolation. Ice is prescribed to exist on surface areas for which the instantaneous temperature lies below freezing. The adjustable parameters of the EBM were chosen to match the GCM solutions. For the regions in parameter space where SICI might occur we do not find the corresponding icefree steady state solution with the GCM. Our simulations with the EBM show that SICI phenomena in the presence of fluctuations are strongly dependent on the amplitude of the noise forcing. When the strength of noise forcing is adjusted to match the fluctuations in the GCM, we do not find a SICI in the EBM. With weaker levels of forcing the SICI reappears. In all cases steady stable ice caps smaller than a critical size are not found to exist.  相似文献   
5.
Ground‐penetrating radar has not been applied widely to the recognition of ancient carbonate platform geometries. This article reports the results of an integrated study performed on an Upper Jurassic outcrop from the south‐east Paris basin, where coral bioherms laterally change into prograding depositional sequences. Ground‐penetrating radar profiles illustrate the different bedding planes and major erosional unconformities visible at outcrop. A ground‐penetrating radar profile conducted at the base of the cliff displays a palaeotopographic surface on which the outcropping bioherms settled. The excellent penetration depths of the ground‐penetrating radar (20 m with a monostatic 200 MHz antenna) images the carbonate platform geometries, ranging between outcrop workscale (a few metres) and seismic scale (several hundreds of metres). This study supports recent evidence of icehouse conditions and induced sea‐level fluctuations controlling the Upper Jurassic carbonate production.  相似文献   
6.
We conducted a factorial shipboard continuous culture experiment to examine the interactive effects of altered iron, irradiance and CO2 on the summer phytoplankton community of the Ross Sea, Antarctica. After 18 days of continuous incubation, iron enrichment increased phytoplankton biomass, nutrient drawdown, diatom and Phaeocystis abundance, and some photosynthetic parameters. High irradiance significantly increased the number of Phaeocystis antarctica colonies, as well as P. antarctica abundance relative to diatoms. Iron and light had significant interactive effects on diatom and P. antarctica pigment concentrations, P. antarctica colony abundance, and Si:N, Si:C, and N:P ratios. The major influence of high CO2 was on diatom community structure, by favoring the large centric diatom Chaetoceros lineola over the small pennate species Cylindrotheca closterium. The ratio of centric to pennate diatoms was significantly responsive to changes in all three variables individually, and to all of their possible two- and three-way combinations. These results suggest that shifts in light, iron, and CO2 and their mutual interactions all play a role in controlling present day Ross Sea plankton community structure, and need to be considered when predicting the possible future responses of biology and biogeochemistry in this region.  相似文献   
7.
The Valanginian is a period of global environmental change as illustrated by sedimentary, palaeontological, geochemical and climatic perturbations. A production crisis in most of the carbonate platforms suggests important changes in palaeoenvironmental conditions. During the same time interval, a major positive excursion in δ13C, the Weissert Event, suggests perturbations of the carbon cycle from the latest Early Valanginian to the Early Hauterivian. In order to better understand the link between these changes, sea‐level fluctuations have been reconstructed in detail from the Middle Berriasian to the earliest Hauterivian. Sections from the Peri‐Vocontian Zone (South‐east France) have been investigated because of the good quality of outcrops on the carbonate platforms, their margins and in the Vocontian Basin. Sections ranging from the most proximal zone (Swiss Jura) to the basin were interpreted in terms of sequence stratigraphy and cyclostratigraphy, and correlated at high resolutions. Using the identified small, medium and large‐scale sequences as well as depositional geometries, sea‐level fluctuations were reconstructed. Two main trends are evidenced during the studied interval: (i) the peak amplitude (magnitude) of the sea‐level fluctuations increased gradually from the Middle Berriasian to the Early Valanginian, and reached a maximum (more than 50 m) from the middle Early Valanginian to the Valanginian/Hauterivian boundary; and (ii) sea‐level variations were quite symmetrical during the Late Berriasian, slightly asymmetrical during the Early Valanginian and strongly asymmetrical (fast sea‐level rise, slow fall) from the latest Early Valanginian to the earliest Hauterivian. Moreover, three orders of sea‐level fluctuations were recognized in the sedimentary rocks of the Peri‐Vocontian Zone. Platform‐basin correlations and cyclostratigraphic interpretations of the basinal sections evidence an astronomical control on the sea‐level variations, mainly by the two eccentricity cycles of 100 and 400 kyr. The increase in the amplitude of the sea‐level fluctuations and their change from symmetrical to asymmetrical can be related to the onset of a major cooling event in the Early Valanginian. Fast transgressions followed by slower regressions would correspond to waxing and waning of high‐latitudinal ice during most of the Valanginian, especially from the latest Early Valanginian to the latest Late Valanginian. Glacio‐eustatic sea‐level fluctuations in tune with the 100 and 400 kyr eccentricity cycles are in agreement with glaciations during the Valanginian.  相似文献   
8.
准噶尔盆地南缘盆山结合部中新生界沉积巨厚,新生代变形强烈,是研究新盆山耦合的理想场所,也是我国砂岩型铀矿找矿的远景区段。本文在综合前人资料和野外观测分析基础上,根据新生代构造活动特征,将准噶尔盆地南缘划分为博格达山前和西部断褶带两个构造分区,博格达山前以强烈的逆冲推覆为特征,发育多条活动的逆冲推覆断裂; 乌鲁木齐以西至乌苏南的西部断褶带则发育三-四排的褶皱-逆冲断裂构造带。对采自博格达山前逆冲推覆断裂带内的方解石和断层泥,利用电子自旋共振测年手段,推测博格达山前的富康-吉木萨尔断裂带和北三台断裂带分别在0.7~1Ma和0.25Ma期间,经历了一期重要的逆冲推覆作用。结合盆地南缘砂岩型铀矿的展布规律及其成矿条件的分析,探讨了新生代构造运动对砂岩型铀矿成矿的控制作用,认为西部断褶带的第一排构造带具有较好的成矿前景,而博格达山前由于新生代构造活动强烈而相对成矿不利,为此提出了准噶尔盆地南缘砂岩型铀矿成矿“构造优先权”的构造控矿模式,进而指出了区域找矿的优选区段。  相似文献   
9.
10.
利用融合二氧化硅毛细管技术制作了纯H2O体系、纯CO2体系、H2O-NaCl体系和H2O-CO2体系的人工包裹体样品,并对样品进行了显微测温和激光拉曼光谱测试工作。实验结果显示毛细管样品中的流体成分具有代表性,而且常规的流体包裹体显微测温和显微激光拉曼光谱分析技术完全适于毛细管样品的测试。对样品的显微测温和拉曼光谱研究...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号